Narayana numbers and Schur-Szego composition

نویسندگان

  • Vladimir P. Kostov
  • Andrei Martínez-Finkelshtein
  • Boris Z. Shapiro
چکیده

In the present paper we find a new interpretation of Narayana polynomials Nn(x) which are the generating polynomials for the Narayana numbers Nn,k = 1 n C k−1 n C k n where C i j stands for the usual binomial coefficient, i.e. C j = j! i!(j−i)! . They count Dyck paths of length n and with exactly k peaks, see e.g. [13] and they appeared recently in a number of different combinatorial situations, [5, 11, 16]. Strangely enough Narayana polynomials also occur as limits as n → ∞ of the sequences of eigenpolynomials of the Schur-Szegő composition map sending (n − 1)-tuples of polynomials of the form (x + 1)n−1(x + a) to their Schur-Szegő product, see below. We present below a relation between Narayana polynomials and the classical Gegenbauer polynomials which implies, in particular, an explicit formula for the density and the distribution function of the asymptotic root-counting measure of the polynomial sequence {Nn(x)}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur positivity and the q-log-convexity of the Narayana polynomials

We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...

متن کامل

q-Narayana numbers and the flag h-vector of J(2?n)

The Narayana numbers are N(n, k) = 1 n ( n k )( n k+1 ) . There are several natural statistics on Dyck paths with a distribution given by N(n, k). We show the equidistribution of Narayana statistics by computing the flag h-vector of J(2×n) in different ways. In the process we discover new Narayana statistics and provide co-statistics for which the Narayana statistics in question have a distribu...

متن کامل

The q-Log-convexity of the Narayana Polynomials of Type B

We prove a conjecture of Liu and Wang on the q-log-convexity of the Narayana polynomials of type B. By using Pieri’s rule and the JacobiTrudi identity for Schur functions, we obtain an expansion of a sum of products of elementary symmetric functions in terms of Schur functions with nonnegative coefficients. By the principal specialization this, leads to q-logconvexity. We also show that the lin...

متن کامل

Non-Euclidean geometrical aspects of the Schur and Levinson-Szego algorithms

In this paper, we address non-Euclidean geometrical aspects of the Schur and Levinson–Szegö algorithms. We first show that the Lobachevski geometry is, by construction, one natural geometrical environment of these algorithms, since they necessarily make use of automorphisms of the unit disk. We next consider the algorithms in the particular context of their application to linear prediction. The...

متن کامل

Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions

In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F -multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F -multiplicity free quasisy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2009